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Fig. 4. External appearance of the mode converter in use with an upper
conducting plate removed.

given by
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where C is a constant which is determined from the ohmic loss
due to the devices such as the shorted plates and coupling holes
except the DSH itself, and / is the length of the DSH guide.
Therefore, the attenuation constant « is determined when the Q
of this system is measured at the several different lengths of the
DSH guide. In our experiment five different lengths were prop-
erly chosen between 0.2 m and 1.0 m.

The material chosen for the dielectric slabs was alumina. The
thickness of the slabs was fixed at 0.5 mm throughout the
experiments. ¢, and tand of the slabs were found 9.1 and
1.0x 1073, respectively, by the measurement at 50 GHz. Two
conducting plates are copper. The space between the two plates
was filled with styrofoam to support the dielectric sheets and
maintaining proper position. ¢ and tand of this material were
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found 1.02 and 8 x10~5 by the measurement at 50 GHz. b is
3 cm.

The experimental results concerning attenuation versus da are
shown in Fig. 2. Circled marks represent measured points and
solid line denotes theoretical prediction with the tan8 of 1.5X
1073, In this graph the loss tangent used for the theoretical curve
has been a little bit differently chosen in such a way that the best
fit for the measured points was achieved. However, fairly good
agreement of the tendency between the theoretical and experi-
mental data has been achieved.

IV. ConcLusioN

The DSH guide was theoretically and experimentally investi-
gated at 50 GHz and the experimental results were satisfactorily
explained by the theoretical predictions. The transmission loss of
the DS H guide has advantages of less than that of single-strip H
guide under the condition of constant cross-sectional area of
dielectrics. The difference of 4.5 dB/m was obtained by our
experimental waveguide dimensions and material.
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A Simple Full-Band Matched 180° E Plane
Waveguide Bend

FRANS C. DE RONDE

A recent publication by Kashyap [1] describes a simple 180°
waveguide bend. However, a similar structure of marginally
increased complexity has been used in the past to make a
matched bend over a whole waveguide band [2].

In order to try to reduce the size of a long straight plain
waveguide in use for a Reflectoscope [3], serpentine bends,
especially in the E plane in order to have minimum reflection,
were considered.

The 180° constant radius bends are easily made by using two
sections of standard waveguide, soldered one on top of the other
with a concave constant radius plunger forming the actual bend
(Fig. 1). In this way the separation between the guides was just
equal to double the wall thickness, namely 0.1 in for standard
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Fig. 1 Unmatched constant radius £ bend.

X-band waveguide (WR 90). The concave movable short was
constructed from a square piece of brass, machined with close
waveguide walls.

The shunt capacitance, formed by the discontinuity between
straight and curved waveguides, gave a maximum reflection of
tolerances to assure good contact with the broad faces of the
about 5 percent, occurring at the highest frequency in the band
(8.2-12.4 GHz). Complete cancellation of this reflection was
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Fig. 2 Full band matched constant radius E bend.
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obtained by matching the discontinuity by series inductances,
formed by the short and narrow gaps between the plunger and
the broad faces. The gap dimensions were optimized empirically
(Fig. 2). As the residual reflection (though no more than one
percent) was still too much for a periodic reflection, the idea was
abandoned for the Reflectoscope. A straight piece of precision
drawn waveguide, although about 3 m long, was, therefore, used.
However, the design of the bend, as shown in Fig. 2, may be of
interest for applications with less severe demands.

Of course, Kashyap’s solution of a flat plunger is simpler, but
far more critical and extremely narrow band; also, total reflec-
tion will occur somewhere in the waveguide band and this could
have serious consequences. The simple modifications, described
above, thus confer considerable benefits.
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Determination of Conductor Losses in Planar
Waveguide Structures
(A Comment to Some Published Results for
Microstrips and Microslots)

REINHOLD PREGLA

Abstract—Waveguide conductor losses are mostly determined from the
fields in the lossless case. In planar waveguide structures with sharp edges
special care has to be taken, because then the fields can be quite different
from those in the lossless case. This paper will explain why the calculated
results are poor in some cases.

The attenuation constant « of a wave in a waveguide is given
by
1 P,
= = 1
“T2P )
where P is the power transmitted by the wave and P, is the time
average of the dissipated power per unit length. The result of this
equation is exact if P, and P are determined exactly. In practice,
however, most difficulties arise in the determination of P,
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Fig. 1. A perfectly conducting wedge.

which, especially for conductor losses, cannot be carried out
exactly. In many cases the part of P,, that is due to conductor
losses, can be approximated by

@

where R, is the surface resistance and | H,| is the amplitude of the
magnetic field at the conductor surface (C) in the lossless case.
Equation (2) gives accurate results only, if the fields in the lossy
and the lossless cases are approximately the same. An important
exception to this occurs at sharp points and corners extending
outward from conductors [1]. The reason for this is, that for both
cases the fields are too different. Therefore, it is not allowed to
use (2) for the calculation of the losses of planar waveguides
such as microstrips, microslots, etc. (which some authors do).

Some mathematical arguments will be given here. Because of
the edge condition [2] for a perfectly conducting wedge (Fig. 1)
the field |H,| increases for small values of r as

P,=R, fC[H,PdZ

1
Hj~— 3
|H,| 7 3)
for an infinitely thin plate (§=0) and as
1
IHII~ 3 (4)
r

for a 90° wedge (6= m/2). In both cases the field has a singular-
ity at the edge, but if the conductivity remains finite, the field
decreases to a finite value, Thus the difference is considerable. A
calculation of conductor losses on the strips in microstrips or
microslots with the field for lossless and infinitely thin strips
gives not only poor results, but is principally impossible: With a
behavior according to (3) the integrand in (2) has a pole of first
order and the integral does not exist. Therefore, it is clear that
the calculations of conductor losses in [3] “are very sensitive to
the order of solution.” The solution cannot converge with in-
creasing order; the results are useless.

The same principal error is found in the so-called “thin strip
program” in [4]. In this program too, the calculated losses should
increase indefinitely with increasing order of solution for the
current distribution. Considered physically, it is clear that it is
impossible to use the field of the infinitely thin conductors,
because there must be a certain volume into which the field can
penetrate in the lossy case.

If the fields of lossless conductors with finite thickness and
rectangular cross sections are used for the calculation [4]-[7], the
integral in (2) remains finite, because the field behavior at the
corners is according to (4). However, the current density in the
real case is not infinite, so this will lead to an error in the
theoretical results, which is as yet unknown, because the real
current distribution in the lossy case is not known. Especially for
the odd mode of coupled microstrips [5]-[7] and for microslots,
where the losses arise essentially from the adjacent edges, the
error might be considerable. Therefore, it should be clear that
the theoretical results for the attenuation constant should not be
used uncritically.
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